영국의 수학자. 미들섹스주(州) 에드먼턴 출생. 케임브리지대학에서 수학하였다. 1712년 왕립학회 회원이 되었고, 14∼18년에는 간사(幹事)의 일을 맡아보았다. 미분학에서 유명한 ‘테일러의 정리(이것을 급수로 전개한 것이 테일러 급수이다)’를 저서 《증분법(增分法):Methodus Incrementorum directa et inversa》(15)에서 밝혔는데, 테일러의 도출(導出)로는 급수의 수렴성(收斂性)에 관한 고찰이 불충분하였다. 그 후, C.매클로린이 무한급수의 고찰로 이것을 재정식화하여 그 저서에 기술함으로써(1742), 흔히 ‘매클로린의 정리(또는 급수)’로도 불린다. 그 진정한 의의는 L.오일러가 《미분학(微分學)》(55)에 응용하여 알려지게 되었으며, 또 J.L.라그랑주가 이에 잉여항(剩餘項)을 추가하고 A.코시가 다시 증명하였다.